Expression, purification and biochemical characterization of the cytoplasmic loop of PomA, a stator component of the Na+ driven flagellar motor

نویسندگان

  • Rei Abe-Yoshizumi
  • Shiori Kobayashi
  • Mizuki Gohara
  • Kokoro Hayashi
  • Chojiro Kojima
  • Seiji Kojima
  • Yuki Sudo
  • Yasuo Asami
  • Michio Homma
چکیده

Flagellar motors embedded in bacterial membranes are molecular machines powered by specific ion flows. Each motor is composed of a stator and a rotor and the interactions of those components are believed to generate the torque. Na(+) influx through the PomA/PomB stator complex of Vibrio alginolyticus is coupled to torque generation and is speculated to trigger structural changes in the cytoplasmic domain of PomA that interacts with a rotor protein in the C-ring, FliG, to drive the rotation. In this study, we tried to overproduce the cytoplasmic loop of PomA (PomA-Loop), but it was insoluble. Thus, we made a fusion protein with a small soluble tag (GB1) which allowed us to express and characterize the recombinant protein. The structure of the PomA-Loop seems to be very elongated or has a loose tertiary structure. When the PomA-Loop protein was produced in E. coli, a slight dominant effect was observed on motility. We conclude that the cytoplasmic loop alone retains a certain function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of PomA mutants defective in the functional assembly of the Na(+)-driven flagellar motor in Vibrio alginolyticus.

The polar flagellar motor of Vibrio alginolyticus rotates using Na(+) influx through the stator, which is composed of 2 subunits, PomA and PomB. About a dozen stators dynamically assemble around the rotor, depending on the Na(+) concentration in the surrounding environment. The motor torque is generated by the interaction between the cytoplasmic domain of PomA and the C-terminal region of FliG,...

متن کامل

Roles of charged residues in the C-terminal region of PomA, a stator component of the Na+-driven flagellar motor.

Bacterial flagellar motors use specific ion gradients to drive their rotation. It has been suggested that the electrostatic interactions between charged residues of the stator and rotor proteins are important for rotation in Escherichia coli. Mutational studies have indicated that the Na(+)-driven motor of Vibrio alginolyticus may incorporate interactions similar to those of the E. coli motor, ...

متن کامل

The systematic substitutions around the conserved charged residues of the cytoplasmic loop of Na+-driven flagellar motor component PomA.

PomA, a homolog of MotA in the H+-driven flagellar motor, is an essential component for torque generation in the Na+-driven flagellar motor. Previous studies suggested that two charged residues, R90 and E98, which are in the single cytoplasmic loop of MotA, are directly involved in this process. These residues are conserved in PomA of Vibrio alginolyticus as R88 and E96, respectively. To explor...

متن کامل

Contribution of many charged residues at the stator-rotor interface of the Na+-driven flagellar motor to torque generation in Vibrio alginolyticus.

In torque generation by the bacterial flagellar motor, it has been suggested that electrostatic interactions between charged residues of MotA and FliG at the rotor-stator interface are important. However, the actual role(s) of those charged residues has not yet been clarified. In this study, we systematically made mutants of Vibrio alginolyticus whose charged residues of PomA (MotA homologue) a...

متن کامل

Cell-free synthesis of the torque-generating membrane proteins, PomA and PomB, of the Na+-driven flagellar motor in Vibrio alginolyticus.

Flagellar motor proteins, PomA and PomB, are essential for converting the sodium motive force into rotational energy in the Na(+)-driven flagella motor of Vibrio alginolyticus. PomA and PomB, which are cytoplasmic membrane proteins, together comprise the stator complex of the motor and form a Na(+) channel. We tried to synthesize PomA and PomB by using the cell-free protein synthesis system, PU...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013